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Abstract

As recent success of transformer architectures have shown superior performance in sequence modeling,

several approaches have been proposed to apply transformers in various fields, including sequential

decision-making and reinforcement learning, such as the prior work on Decision Transformers. However,

Markov Decision Processes (MDPs), the standard problem setting in sequential decision making and

reinforcement learning, require information on the transition sequence of state, action, and reward. This

information is not always available in real-world problems. In this paper, we propose a new problem

setting for decision making, which is a relaxation of the MDP that requires fewer conditions, thus

making it easier to apply in many real-world situations, such as robotic control or experimental design.

By extending the approach used in Decision Transformers, we suggest a decision making method that

leverages the sequence modeling power of transformers in this new problem setting. Additionally, we

propose an active learning framework that could enable goal-oriented active learning in this new problem

setting, using uncertainty modeling and sequence generation.

Keywords Sequential Decision Making, Reinforcement Learning, Decision Transformer, Transformer

Architecture, GPT Architecture, Self-Supervised Learning, Uncertainty Modeling, Active Learning, Ex-

perimental Design
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Chapter 1. Introduction

Figure 1.1: Illustration of Markov Decision Process.

The advance of deep learning and reinforcement learning (RL) made it possible to solve and even

outperform human experts in many real-world sequential decision making problems [16, 20, 22]. Also,

recent work has shown that the transformer architecture [21] is highly e↵ective in sequential modeling

tasks through capturing high-dimensional semantic concepts at scale, enabling zero-shot language model-

ing [17, 2] and out-of-distribution image recognition [6] and generation [18]. This success of transformers

extends their application to various fields, such as sequential decision making and RL, as done in the

prior work on Decision Transformers [3] or Trajectory Transformers [10]. These approaches have shown

that conventional RL algorithms can be replaced with generative sequence modeling with transformers,

which is a more flexible and powerful approach.

However, the condition of Markov Decision Processes (MDP), which is the standard problem set-

ting in sequential decision making and reinforcement learning, is somewhat restrictive. MDP requires

information on the transition sequence of state, action, and reward. This information is not always

available in real-world problems. For example, in robotic control or experiment design, it is notoriously

hard to manually formulate a task-specific reward [1], and state observations also need actual sensors

which usually come with expensive costs. Due to the di�culty of reward formulations, there are even

approaches that try to learn rewards from human preferences, which have recently shown great potential

on language modeling in ChatGPT [4, 15]. In these cases, we may not be able to apply the standard RL

algorithms, and relaxing the condition of MDP can be useful to express these problems.

In this paper, we propose a new problem setting for sequential decision making, which is a relax-

ation of the MDP that requires fewer conditions, thus making it easier to be applied in many real-world

situations. Also by extending the approach used in Decision Transformers, we introduce a decision mak-

ing method that leverages the sequence modeling power of transformers in this new problem setting.

Additionally, we propose an active learning framework that enables goal-oriented active learning in this

new problem setting, using uncertainty modeling and sequence generation. Finally, we conducted exper-

iments simulating our proposed methods on a synthetic environment. Before elaborating the proposals,

we briefly review the prior works related to it.
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Chapter 2. Related Works

2.1 Sequential Decision Making & Markov Decision Process

Sequential decision making refers to the task of making a series of decisions over time, especially

when the earlier decision a↵ects the outcome of subsequent decisions. Sequential decision making is very

common in real-world situations, such as robotics, finance, autonomous driving, game playing, or even

planning a trip.

Markov decision process (MDP) is a popular framework used to model sequential decision making

problems. In MDP, a decision making process is described by a sequence of states, actions, and rewards.

At each time step, an action is applied to the environment. According to the action, the environment’s

current state transitions to the next state, and a reward is generated by the environment to express the

correctness of the selected action for the current state. Another condition of MDP is that the next state

and reward only depend on the current state and action, not on the previous states and actions. This

condition is called the Markov property, and it is a very strong assumption that is not always true in

real-world situations, although it is a very useful assumption to make the problem easier to solve.

2.2 Reinforcement Learning & O✏ine Reinforcement Learning

Reinforcement learning (RL) is a popular solution of MDP that uses a trial-and-error approach

to learn the optimal policy. The agent tries to collect samples by interacting with the environment,

regarding all the choices and experiences that the agent has collected so far. The agent’s goal is to

find the optimal policy that maximizes the expected cumulative reward (also known as return) over

time. With the combination of conventional theoretical concepts of reinforcement learning and function

estimation of deep learning, deep RL has become a popular and powerful method in solving MDPs and

making decisions in real-world problems, often outperforming humans [16, 20, 22].

O✏ine Reinforcement Learning [14] represents a more challenging variant of RL that relies on a

static dataset for learning, rather than interacting and collecting data directly from the environment.

This approach could be beneficial in real-world scenarios where engaging with the environment is cost-

prohibitive, such as in the domains of robotics or healthcare. Given that the context of o✏ine RL can be

handled in a manner similar to supervised learning, rather than standard online RL, sequence modeling

methods within RL are often more oriented towards o✏ine RL instead of online RL. [3, 10]

2.3 Transformers

The transformer architecture [21] is a sequence modeling architecture that uses self-attention to

capture long-range dependencies. It is currently the most successful architecture in many fields of

machine learning due to its powerful sequence semantic capturing ability and scalability, leading to

successful applications in natural language processing [17, 2], computer vision [6], time series prediction

[23], or even protein folding applications such as AlphaFold [11].

The Generative Pre-trained Transformer (GPT) architecture [17] is a special version of transformers,

using only transformer decoders. The GPT architecture has shown great success in autoregressive gener-

2



ative sequence modeling, such as OpenAI’s GPT-3 [2]. The GPT architecture is also used in our work, as

it is a powerful sequence modeling architecture also proven to be capable of sequential decision making

and reinforcement learning in the prior work of Decision Transformers [3] and Trajectory Transformers

[10].

2.4 Uncertainty Modeling

Uncertainty modeling [8] is a process of quantifying the uncertainty of lack of knowledge of the

model’s prediction, due to noisy, limited, ambiguous data. For real-world applications, uncertainty

modeling can aid decision making in high risk fields such as medical image analysis for autonomous

vehicle control. Uncertainty modeling can also help in machine learning situations where we want to

make a decision based on what we don’t know, such as reinforcement learning and active learning. Monte

Carlo Dropout [7] and Neural Processes [12] are two methods of uncertainty modeling that are covered

in this paper.

2.5 Active Learning

Active learning [19] is a machine learning approach that involves an iterative process of selecting

the most informative samples from a large unlabeled dataset and requesting labels for those samples.

The goal of active learning is to train a model with high performance while minimizing the amount of

labeled data required for training. Uncertainty modeling can be used as a measure of informativeness,

and is often used in active learning when selecting samples.

2.6 Self-Supervised Learning

Self-supervised learning [9] is a machine learning paradigm where a model learns from unlabeled data

without explicit human supervision. As its name suggests, self-supervised learning creates an auxiliary

task and generates labels from the unlabeled data, and learns it in a supervised manner. One of the most

successful self-supervised learning methods is generative modeling, where the model learns to generate

new samples that are similar to the original data. Generative modeling is used in training GPT language

models [17, 2] and also Decision Transformers [3] that use GPT models. Another popular self-supervised

learning method is masking and reconstructing the data. This method is used in BERT [5] and other

similar models.
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Chapter 3. Approach

In this section, we provide details of our problem definition, Return and Action Only Process

(RAOP). Then, we suggest a solution method for RAOP with self-supervised reward predictor and goal-

oriented autoregressive sequence modeling based on Transformers. Finally, we propose a goal-oriented

active learning framework for RAOP via uncertainty modeling, inspired by the goal-oriented sequence

generation capability of GPT.

3.1 Problem Definition

3.1.1 Markov Decision Process

To understand our problem definition, we first take a look into Markov Decision Process (MDP)

which is a standard framework for sequential decision making, since it is comparable to our setting. MDP

is defined as a tuple of (S,A,P,R), where S is the state space, A is the action space, R : S ⇥ A ! R
is the reward function, and P : S ⇥ A ⇥ S ! [0, 1] is the transition probability. MDPs also should

satisfy the Markov Property, which is a condition requiring the next state and reward to only depend

on the current state and action, and not on the previous state and actions. Markov property can be

mathematically expressed as P(st|st�1, at�1, st�2, at�2, · · · , s0, a0) = P(st|st�1, at�1). The goal of the

agent is to find a policy ⇡ : S ! A that maximizes the expected sum of rewards E⌧⇠⇡

hPT
t=1 R(st, at)

i
,

where ⌧ = [(s1, a1), · · · , (sT , aT )] is the trajectory of state-action pairs induced by the policy ⇡. The

sum of rewards is also called as the name of return, which is R(s1:T , a1:T ) =
PT

t=1 R(st, at). Return-

to-go refers to the sum of rewards starting from the current time step t0, which is R(st0:T , at0:T ) =
PT

t=t0 R(st, at). The prior work of Decision Transformers [3] and Trajectory Transformers [10] showed

that autoregressive generation of sequences including return-to-go can simulate reinforcement learning.

3.1.2 Return and Action Only Process (RAOP)

We propose a new problem setting which is a simplification and relaxation of Markov Decision

Process that could enable much broader application of real-world problems, which we call Return and

Action Only Process (RAOP). RAOP is defined as a tuple of (A,R), where A is the action space

and R : AT ! R is the return function, and T is the trajectory length. The goal of the agent is to find

a policy ⇡ : A ! A that maximizes the expected return E⌧a⇠⇡ [R(a1:T )], where ⌧a = [a1, a2, · · · , aT ] is
the trajectory without states (only actions). Note that the state space S and the transition probability

P are removed from the definition of MDP, and the reward is no longer available for each time step,

other than the single return value R(ai1:T ) that is generated only when every sequence of actions in the

trajectory are executed. Due to easier application of sequence modeling, we consider an o✏ine setting of

RAOP in this paper, so we do not have direct access to the RAOP environment and only have to learn

from the given the action trajectory dataset D = {(ai1:T ,R(ai1:T ))}Ni=1, where ai1:T is the action sequence

and R(ai1:T ) is the return of the action sequence. Also we would like to emphasize that RAOP does not

require anything like the Markov Property, which is rather a convenient but often unrealistic constraint

in MDP. Thus RAOP can model tasks better than MDP that have dependencies on past states and

actions, which is quite a common situation in the real-world but is tricky to express in MDP.

4



3.2 Self-Supervised Reward Predictor for RAOP

Figure 3.1: Self-Supervised Reward Predictor for RAOP.

In this section, we assume that the return of RAOP is latently a sum of rewards for each action in

the trajectory sequence, which is a common assumption in RL. Based on that assumption, we propose to

train a reward predictor in a self-supervised manner. For better understanding, before going into details

about the self-supervised reward predictor, we could consider a simple and näıve return predictor for

RAOP trained for the following loss:

L(✓) = Eai
1:T ,R(ai

1:T )2D
⇥
(f✓(a

i
1:T )�R(ai1:T ))

2
⇤
. (3.1)

where f✓(·) is a neural network parameterized by ✓, which takes the action sequence ai1:T as an input and

outputs the expected return of the input action sequence. The neural network is trained to minimize the

expected Mean Square Error (MSE) between the predicted return and the ground-truth return. However,

we found that this näıve application is too trivial to learn meaningful representations for predicting the

rewards. To overcome this limitation, we propose to mask some parts of the action sequence data and

make the neural network predict the return of the masked action sequence. Intuitively, we can estimate

return-to-go values from return values with self-supervised learning, thus making room for simulating

RL with return-to-go values as shown in [3, 10]. Specifically, our masked self-supervised learning for the

reward prediction for RAOP is as follows:

mask(ai1:T ) = { ([a1, . . . , aT�1,MASK],R(ai1:T )), ([a1, . . . , aT�2,MASK,MASK],R(ai1:T )), . . . ,

([a1, a2,MASK, . . . ,MASK],R(ai1:T )), ([a1,MASK, . . . ,MASK],R(ai1:T )) }. (3.2)

DMASK = D [
 

N[

i=1

mask(ai1:T )

!
, where |DMASK| = N +N ⇥ (T � 1) = N ⇥ T, (3.3)

LMASK(✓) = Eai
1:T ,R(ai

1:T )2DMASK

⇥
(f✓(a

i
1:T )�R(ai1:T ))

2
⇤
, (3.4)

where mask(·) is a function that masks the input action sequence from the last action aT to the second

action a2 with the MASK token, DMASK is the augmentation of the original trajectory dataset D by the

masked trajectory dataset
SN

i=1 mask(a
i
1:T ), and LMASK is the proposed masked loss of self-supervised

reward predictor for RAOP. Figure 3.1 depicts the overall process for training and utilizing the self-

supervised reward predictor.
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3.3 Solving RAOP with Goal-Oriented Autoregressive Sequence

Modeling via Transformers

(a) GPT-Raa : g�([R(a1:T ), a1, a2, · · · , aT ])

(b) GPT-RaR : g�([R(a1:T ), a1, R̂(a2:T ), a2, · · · , R̂(aT ), aT ])

Figure 3.2: Autoregressive Goal-Oriented Sequence Generator. There are two settings: a) GPT-Raa:

predict the next action given the previous actions and the return, b) GPT-RaR: predict the next action

given the previous actions and the return-to-go series estimated by the self-supervised reward predictor.

The orange dotted arrows denote masked self-attention that enables the model to generate the next action

without seeing the future action, which is commonly used in GPT autoregressive sequence generation.
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In this section, we solve the RAOP problem with goal-oriented sequence modeling via transformers,

especially with autoregressive sequence generation using the GPT architecture. There are two formula-

tions that we consider: a) GPT-Raa: predict the next action given the previous actions and the return,

b) GPT-RaR: predict the next action given the previous actions and the return-to-go series estimated

by the self-supervised reward predictor.

For simplicity, we first consider GPT-Raa, which does not utilize the self-supervised reward pre-

dictor we trained in 3.2. For GPT-Raa, we train the model g� as follows:

LRaa(�) = E(ai
1:T ,R(ai

1:T ))2D
⇥
(g�([R(a1:T ), a1, a2, · · · , aT ])� ai1:T )

2
⇤

(3.5)

where g�(·) is a GPT transformer network parameterized by �, which takes the sequence of return and

action as input and outputs action sequence prediction. GPT-Raa just uses the given dataset as it is,

and performs sequence modeling with given return and action sequence.

Next, we consider GPT-RaR, which utilizes the self-supervised reward predictor f✓ we trained in

3.2. For GPT-RaR, we train the model g� as follows:

R̂(at:T ) = R(a1:T )� f✓([a1, a2, · · · , at�1,MASK,MASK, · · · ,MASK]) (3.6)

LRaR(�) = E(ai
1:T ,R(ai

1:T ))2D

h
(g�([R(a1:T ), a1, R̂(a2:T ), a2, · · · , R̂(aT :T ), aT ])� ai1:T )

2
i

(3.7)

where equation 3.6 refers to the return-to-go estimation using the self-supervised reward predictor f✓

defined in 3.4. R(a1:T ) denotes the real return given by the dataset, and R̂(at:T ) denotes the return-to-go

estimated by the predictor f✓. For GPT-RaR, we include the estimated return-to-go R̂(at:T ) into the

sequence of inputs into the GPT model, similar to the prior work of [3].

The two formulations are graphically illustrated in Figure 3.2. In both formulations, the model

targets to minimize the di↵erence between input action and generated action, following the prior work of

[3]. Cross-entropy loss is used for discrete action space and mean-squared error loss is used for continuous

action space. Note that the masked self-attention architecture of GPT enables the model to generate the

next action without seeing the future actions, which is a crucial property for sequential decision making

and why it is acceptable to give inputs of g�(ai1:T ,R(ai1:T )) for estimating ai1:T .

7



3.4 Goal-Oriented Active Learning for RAOP via Uncertainty

Modeling

Algorithm 1 Goal-Oriented Active Learning in RAOP

Input: Train dataset Dtrain, Goal G, Learning rate �f ,�g, Loss function Lf ,Lg, Number of

acquisition m,n

Output: Return predictor f✓, Sequence generator g�

1: reached False

2: for each active learning step do

3: Randomly initialize ✓, �

4: for each gradient step do

5: Draw a mini-batch B from Dtrain

6: ✓  ✓ � �fr✓Lf (✓,B)
7: � �� �gr�Lg(�,B)
8: end for

9: Draw m samples as M from distribution of sequence generator conditioned by goal

. M ⇠ g�(G)
10: Compute uncertainty of each sample in M using the return predictor

. u(M) = Var[f✓(M)]

11: Select n samples as N with highest uncertainty from M
. N  argmax

M
[u(M)]

12: Label N and append them to Dtrain

13: if sample with label G exists in Dtrain then

14: reached True

15: end if

16: end for

17: return ✓,�, reached

The standard framework of active learning [19] is to select the most informative data points from

the unlabeled dataset, add them to the labeled dataset, and then retrain the model with the new labeled

dataset. However, the selection of data points from the unlabeled dataset usually involves exhaustive

search of the whole unlabeled dataset, which is not e�cient in real-world problems especially when we

don’t even have an unlabeled dataset and we have to select samples from the search space. Also, usually

the samples are selected based on the uncertainty of the model, which is not always the best choice when

we want to select samples that could help find a specific goal.

We thus suggest a goal-oriented active learning framework for RAOP in algorithm 1 that can generate

samples from the search space without having to exhaustively search the dataset, and select the most

informative samples that could help find a specific goal. For this active learning framework, we add

uncertainty modeling (such as Monte Carlo Dropout [7] or Neural Processes [12]) on the return predictor

and sequence generator, and utilize the uncertainty to sample from the search space and decide most

informative samples. The return predictor f✓ and sequence generator g� are described in 3.2 and 3.3.

8



Chapter 4. Experiments

In this section, we now experimentally verify the proposed method using a synthetic environment

which is similar to a “quizshow” setup.

4.1 Experimental Setup

Figure 4.1: Example setting of the “quizshow” synthetic environment. In this illustrated example, the

number of questions is T = 10 and the number of possible answers is N = 5. For each grid number, the

first number represents the question number and the second number represents the answer number. So

4-1 stands for answer number 1 in question number 4. The green circles represent the correct answer and

the red circles represent the input answer sequence ai1:T that the agent executed. By observing the green

circles, we can see that in this example, the first question has only 1 correct answer (4) and the second

question has 2 correct answers (1,3). Since the input answer sequence is correct until the 5th question

and wrong in the 6th question, even though the agent got correct answers for 7th to 10th questions, the

agent cannot earn any points after the 6th question. So the return score R(ai1:T ) of this input answer

sequence is 5.

We first elaborate the synthetic environment used for our experiments. In this environment, our

objective is to obtain consecutive answers correctly in a series of questions. ai1:T is the sequence of

answers, and R(ai1:T ) is the score of the sequence of answers. Starting from the first question, the agent

has to get the correct answer consecutively for each question, earning one point for each correct question.

If the agent gets any question wrong, then it cannot earn any points after the wrong answer, even if

the subsequent answers are correct. This attribute is contrary to the Markov property, where previous

actions should not a↵ect current decisions. When the number of questions is T , and the number of

9



possible answers in each question is N , each question can have 1 to N � 1 correct answers. Figure 4.1

shows an example instantiation of the quizshow environment. By default, we use T = 10 and N = 5

for this experiment. We generate 1000 samples so that the score distribution of the samples is evenly

balanced from 0 to K. We split the dataset into 8000 and 2000 samples each for the training set and test

set.

4.2 Return Predictor

(a) MLP (b) GPT

Figure 4.2: Test set scatter plot of simple return predictor f✓. Scatter dots are drawn as blue emtpy

circles. The red dotted line is drawn by the formula of y = x. The circle dots overlapping clearly in

GPT shows that the prediction of GPT is more consistent than MLP.

MLP GPT

MSE 0.0029 0.0141

Table 4.1: MSE of simple return predictor f✓. Lower is better.

To briefly assess the di�culty of the task, we first train a simple return predictor f✓ as described

in 3.1. We compare Multi-Layer Perceptron(MLP) and GPT architectures for the predictor. Note

that there is no autoregressive sequence generation when we use GPT as the predictor, and the output

sequence of GPT is connected to a linear head to infer the return score. Each model is trained for 100

epochs, and the batch size is 512. Figure 4.2 and Table 4.1 illustrates the scatter plot and MSE loss for

test set evaluation. The results show that the MLP architecture shows better performance than GPT,

but the prediction is slightly more inconsistent than GPT.
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4.3 Self-Supervised Reward Predictor

Now we train a self-supervised reward predictor f✓ as described in 3.4. For each sample of Dtrain,

we generate and augment T � 1 samples by masking the action with mask length 1 to T � 1. We use

the same MLP and GPT architectures for the predictor. Note that there is no autoregressive sequence

generation when we use GPT as the predictor. Each model is trained for 30 epochs, and the batch size

is 512. Figure 4.3 illustrates the scatterplot for test set evaluation. We can see not much di↵erence in

using MLP and GPT as the self-supervised reward predictor. The first row of Figure 4.3 shows that the

prediction is more accurate as the action sequence mask is shorter. The second row of Figure 4.3 shows

that the prediction is accurate when the result is actually predictable (x-axis bigger than 0).

(a) MLP (b) GPT

Figure 4.3: Scatter plot of self-supervised reward predictor f✓. Scatter dots are drawn as blue emtpy

circles. The x-axis of the first row is non mask length, which is the length of the action sequence that is

not masked. The x-axis of the second row is non mask length - target. If the non mask length - target

value is is bigger than 0, the target is accurately predictable due to the environment setting. The y-axis

of both rows is the di↵erence of prediction and output.
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4.4 Goal-Oriented Action Sequence Generator

MLP GPT-Raa GPT-RaR

CE 5.8125 5.4315 5.3590

Online Score 7/16 11/16 14/16

Table 4.2: CE and Online Score of action sequence generator. Lower CE and higher Online Score is

better. Online score is measured on T + 1 = 16 samples, which represent score 0 to T .

As described in 3.3, we have 2 settings of the sequence generator: GPT-Raa, GPT-RaR. In

GPT-Raa, we feed the sequence of return and actions as the input of the GPT model g�. In GPT-

RaR, we estimate the return-to-go value with the self-supervised reward predictor f✓ trained in the

previous section 4.3, and feed it as the input of the sequence generator GPT model g�. For comparison,

we also train a simple classification model with MLP. We train the models for 200 epochs, and the

batch size is 512. Since the environment has a discrete action space, we use cross entropy (CE) loss for

training. We also score online performance, which measures how many of the sequences generated were

actually sequences that have return scores of 0 to T . For better comparison, we make the task harder

by using an environment setting of T = 15 for the sequence generator experiment. We would like to

emphasize that the online score is much more meaningful than the CE loss, because the CE loss does not

necessarily mean that the generated action is incorrect, rather it only means that the generated action

is not identical to the action in the dataset. The online score can mitigate this limitation, since it can

check whether the generated action is actually correct or not by interacting with the environment. Table

4.2 illustrates the CE loss and online score for MLP, GPT-Raa, GPT-RaR. The results show that the

GPT model perform better than the MLP model presumably due to its sequence modeling capability.

Also, we can observe that the return-to-go value generated with the self-supervised reward predictor f✓

in GPT-RaR actually helped training quite substantially, by boosting the online score up to 14/16.
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4.5 Uncertainty Modeling

(a) MLP (b) GPT

Figure 4.4: Test set scatter plot of simple return predictor f✓ with uncertainty modeling via MC dropout

shown as errorbars. Scatter dots are drawn as blue emtpy circles. The red dotted line is drawn by the

formula of y = x. The green bar denotes the standard variance uncertainty of the prediction.

MLP GPT

NLL 0.1209 -0.4083

RCE 0.8309 0.7228

Table 4.3: NLL, RCE of simple return predictor f✓ with uncertainty modeling via MC dropout. Lower

is better.

To check the capability of uncertainty modeling, we model uncertainty for the simple return predic-

tor by applying Monte Carlo dropout(MC dropout) [7]. Again, we compare MLP, GPT architectures.

Each model is trained for 500 epochs, and the batch size is 512. We draw 1000 monte carlo samples for

evaluation. Table 4.3 and Figure 4.4 illustrate the negative log loss (NLL), regression calibration error

(RCE) [13], and scatterplot with errorbars for evaluation. Our results show that with uncertainty mod-

eling via MC dropout, the GPT architecture shows more outstanding performance than MLP, contrary

to the results with no uncertainty modeling. In both MLP and GPT, the uncertainty gets higher when

the score is higher. This is likely due to the nature of the environment, since the higher the score, the

more the possible answer sequences exist. We can see that GPT shows a much more accurate estimate

in both mean and standard deviation than MLP.
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Chapter 5. Conclusion

In this paper, we proposed a new problem setting of sequential decision making which is more

relaxed than Markov Decision Processes and thus more applicable to real-world problems. Then we

proposed a decision making method that leverages the sequence modeling power of transformers in this

new problem setting. The experiment results showed some potential of our approach with the powerful

sequence modeling capability of GPT. We also proposed an active learning framework on this new

problem setting, but experiments on the active learning framework still remain to be conducted. We

have checked that the uncertainty modeling performance of MC dropout is not that accurate in our

setting. Better uncertainty modeling would be essential for the active learning framework to work well.

For future work, we plan to enhance uncertainty modeling by possibly better uncertainty model-

ing methods such as Neural Processes, and integrate it into the active learning framework to conduct

experiments on active learning. We also plan to conduct experiments on real-world problems, such as

the experimental design task of semiconductor manufacturing processes, which represents a task that is

impossible or too expensive to acquire state or reward transition information with current technology,

thus impossible to model with Markov Decision Processes (MDP), but possible to model with Return

and Action Only Processes (RAOP).
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